Single-crystal Magnetic Properties of trans-Dimesitylbis-(diethylphenylphosphine)cobalt(II)

R. B. BENTLEY, F. E. MABBS, and W. R. SMAIL

(Chemistry Department, University of Manchester, Manchester, 13)

and M. GERLOCH* and J. LEWIS

(Chemistry Department, University College, Gower Street, London, W.C.1)

AN X-ray structural analysis1 of trans-dimesitylbis-(diethylphenylphosphine)cobalt(II) (I) has described the centrosymmetric, planar co-ordination of the metal atom as resulting from the steric blocking of the fifth and sixth octahedral co-ordination sites by the ortho-methyl groups of the mesityl ligands. E.s.r. work at Q-band frequencies at $ca 80^{\circ}$ K on single crystals of the pure compound, and of the cobalt-doped, diamagnetic, nickel(11) analogue, has defined the g- and A-tensors as approximately coincident with the co-ordination shell: x-axis (phosphine-Co-phosphine) A_{xx} = 0.0391 cm.⁻¹ (g_{xx} = 3.72), y-axis (mesityl-Co-mesityl) A_{yy} = 0.0045 cm.⁻¹ (g_{yy} = 1.96) and z-axis (perpendicular to co-ordination plane) A_{zz} = 0.0137 cm.⁻¹ (g_{zz} = 1.74). The large ansiotropy in the co-ordination plane of this complex may be contrasted with the essential in-plane isotropy of cobalt phthalocyanine (II).² The g-tensor is similar, however, to that reported for the planar molecule bis(maleonitriledithiolate)cobalt(II) (III)³ as represented in Figure 1.

 $\begin{array}{c|c} & g_{xx}=3\cdot72 \\ & g_{xx}=2\cdot80 \\ & & \\ &$

in-piane) = 2.00 and 2.92		
$g_{zz}(\text{out-of-plane}) = 1.92$	g _{zz} = 1·74	g _{zz} = ·98
(11)	(I)	(III)

0

FIGURE 1. The principal g-values of three square-planar cobalt(11) complexes.

The electronic spectrum of the complex is characterised by a band at 8500 cm.⁻¹ (ϵ_{max} ca. 8·5) which in the crystal at 20° K reveals a greater transition probability in the xy plane than parallel to z. The complex is transparent from 10,000 to ca. 20,000 cm.⁻¹, whilst structure on the edge of the charge-transfer spectrum at ca. 20,000 cm.⁻¹ has not yet been assigned with certainty.

If we assume a spin-paired d^7 configuration for the molecule and include spin-orbit coupling to second-order we have shown that the observed g and A tensors are compatible only with the ground state $(xz)^2(yz)^2(yx)^2(z^2)$.¹ (with the assumption that the $d_{x^2-y^2}$ orbital, which is directed at the ligand donor atoms, is energetically unfavourable for electron occupation). This interpretation leads to $\zeta/\Delta_{xz} = -0.044$ and $\zeta/\Delta_{yz} = -0.325$, with P reduced to 84% of the free-ion value. If the spin-orbit coupling constant ζ is reduced in the same proportion as P, we

calculate the transfer energies Δ_{yz} and Δ_{zz} , of the odd electron from the $(xz)^2(yz)^2(xy)^2(z^2)^1 \rightarrow (xz)^2(yz)^1(xy)^2(z^2)^2$ and $(xz)^1(yz)^2(xy)^2(z^2)^2$ configurations to be 1350 and 9950 cm.⁻¹ respectively. However, if the absorption at 8500 cm.⁻¹ is taken to represent Δ_{xz} then $\zeta = -375$ cm.⁻¹, a reduction of 27% below the free-ion value. Such an assignment is not incompatible with the single-crystal electronic spectrum. By using this value for the spin–orbit coupling constant in the complex we calculate $\Delta_{yz} = 1150$ cm.⁻¹.

Powder susceptibilities and single-crystal magnetic anisotropies of the mesityl complex have been measured over the range $90-300^{\circ}$ K. Principal molecular magnetic susceptibilities and moments were calculated on the basis of the orientation of the *g*-tensor. The results may be represented briefly by:

FIGURE 2. Proposed energy level diagram for trans-dimesitylbis(diethylphenylphosphine)cobalt(11).

If we assume that there is thermal population of the ground state only, the average magnetic moment calculated in first-order from the average g-value is $2 \cdot 26$ B.M.; this agrees well with the observed value of $2 \cdot 26$ B.M. at 90° K when the second-order Zeeman effects are relatively small.

The g and χ -tensors both show approximately axial symmetry with the unique direction being along the metal-phosphorus bonds. The approximate isotropy in the yz

plane need not, however, imply either a circularly symmetric ligand field in that plane or a unique role for the P-Co-P axis. This point has been demonstrated recently for tetrahedral $copper(II)^4$ and $nickel(II)^5$ complexes. In Figure 2 we show how the large in-plane magnetic anisotropies are compatible with a planar ligand-field. From left to right are shown the orbital splitting patterns under the octahedral field, the predominant tetragonal distortion, and the full D_{2h} symmetry in the molecule. The configuration $(xz)^2(yz)^2(xy)^1(z^2)^2$ does not mix into the ground state by spin-orbit coupling and so cannot be placed energetically by our calculations. The magnitudes of g_{xx} and of the in-plane anisotropy derive essentially from the proximity to the d_{z^2} of the d_{yz} relative to the d_{xz} orbital. This ordering of levels may result in two ways: (i) a stronger crystal field set up by the mesitylene groups relative to the phosphines would destabilise d_{yz} relative to d_{xz} , and (ii) π -bonding with the acceptor phosphine ligands may stabilise d_{xz} and d_{xy} relative to d_{yz} .

(Received, November 28th, 1968; Com. 1631.)

- ¹ P. G. Owsten and J. M. Rowe, J. Chem. Soc., 1963, 3411. ² J. F. Gibson, D. J. E. Ingram, and D. Schonland, Discuss. Faraday Soc., 1958, 26, 66.
- ⁸ A. H. Maki, N. Edelstein, A. Davison, and R. H. Holm, J. Amer. Chem. Soc., 1964, 86, 4580.
- ⁴ M. Gerloch, J. Chem. Soc. (A), 1968, 2023. ⁵ M. Gerloch and R. C. Slade, J. Chem. Soc. (A), in the press.